LOCAL HEATING OF AN UNBOUNDED ORTHOTROPIC PLATE
THROUGH A CIRCULAR AND ANNULAR DOMAIN

V. P. Kozlov, V. S. Adamchik, UDC 536.21
and V. N. Lipovtsev

The regularities of temperature field development in an unbounded orthotropic
plate heated through circular and annular domains by an arbitrary heat flux of
density q{r, 1) are established.

1. HEATING THROUGH A CIRCULAR DOMAIN

An unbounded plate (Fig. 1) of height h whose initial temperature is constant and equal
to T, at all points is heated in the domain of a circle r < R {z = 0) by a heat flux of the
specific intensity q(r, T). Outside the circle, the plate surface is insulated. Heat trans-
fer according to the Newton law occurs through the surface z = h with a medium whose tamper-
ature is Ty;. Solve the following heat conduction boundary value problem
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Let us apply the Laplace and Hankel integral transforms in 1 and r, respectively, to
(1)-(5). Then the general solution of the transformed equation (1) is
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The following dual integral equation results from (6) and the boundary conditions (4)
and (5)

o —— —

/ ”" // S (7(" S)
JT J;(l[r) ,/ 2 C.-, , S d ::__._.____’____,
V z ’(E p o ’ l p + a’)‘ “(p ) p ;\'Z

r<<R;

a7 L s N
1/7— ( plotpr) i/ P —=Calp. sjdp =0, r>R.
g T
To solve the equations, the function gq(r, 7T) must be represented in terms of a Hankel
integral and the value of the discontinuous integral must be used
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The constant C,;(p, s) is determined in terms of C.(p, s) from (6) and the boundary condition
Finally, the solution of the problem (1)-(5) in Laplace image space has the form
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The theta function representations mentioned permit the temperature distribution law to be
obtained in the form of a rapidly convergent series for either large values of t (10) or

for small (9).
If the heat flux density is q(r, 1) = q, = const, then we have from (8) and (9)
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where
K, = a,fa, = hihy;; h=h/R, 2=2/R; T = r/R;
Ki, = g,R/{A,Ty); Fo, = a/R2.
The temperature field on the r = 0 axis has the form
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The temperature distribution on the surface z = 0 (r 2 0, Fo, = a,1/R* > 0) can be
written in the form
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(—--5, —2—; 1 rZ} is the complete elliptic integral of the second kind.
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The change in temperature at the center of the heating spot has the following forn for
r=2z=20
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As h + » solutions for iso- and orthotropic half-spaces follow from (11)-(14) {2, 4-
11].

In the case of a stationary thermal mode (T + =) we have from (8)
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Fig. 1. Physical model of an unbounded
orthotropic plate heated through a cir-
cular domain, z = 0, 0 < r <.
to evaluate the integral in the right side of (16).
Finally (16) takes for form

InQVLU
TO0, =Ty _7 4 & _ | 2%VK (17)
T, Ki, n VK, o+ 1

If the integral in the right side of (15) is evaluated in an analogous manner, the
following representations must here be utilized
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The stationary temperature field T(r, z, ») has the following form for the appropriate
ranges ¥ < 1l and r > 1
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Appropriate solutions to determine the temperature fields in an unbounded isotropic
plate heated by an analogous source result from the dependences represented above in the
particular case for Kz = 1., Numerical data on the formation of the dimensionless tempera-
ture field (14) at the central point (r = z = 0) of a circular heat source of constant in-
tensity in ideal thermal contact with a part of a surface (z = 0) of an unbounded iso-_and
orthotropic plate are presented in Table 1 as a function of the numbers Fo, = a,t/R?, h =
h/R and K, = ap/az = Ap/X; = 0.1; 1; 10. Represented for comparison in separate columns
(h = =) are appropriate values of the temperature field (14) for an iso- and orthotropic
half-space heated through a circular domain by an analogous source.

The established regularities of two-dimensional nonstationary and stationary tempera-
ture field development in an unbounded iso- and orthotropic plate heated by a constant in-
tensity circular heat source permit working out a number of new methods to determine the
thermophysical characteristics (ayp, az, Ay, Az, by, by) of iso- and orthotropic materials
on specimens in the shape of plates if the theoretically postulated boundary conditions are
realized in the thermophysical experiment. Thus, for instance, in the initial heating stage
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(t » 0), the value of the excess temperature at the central point (r = z = 0) of the circu-
lar heating spot is, according to (14), expressed in the classical form

T, 0, H/—T, _ 2VFo, ' (20)
T, Ki, Vo -
from which the thermal activity b, can be computed from the formula
b, = 2n—4/2q, V v /IT (0, 0, ©) — Tl (21)

In the stationary thermal regimé [T(r, 0, =) = T,1/[T(0, 0, =) — T,] = N; = £,(K,, h)
or [T(O, Z, °°) - To]/[T(O’ 0’ °°) - Nz = f:(Ka, h)-

Graphs of the depeendences
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are presented in Fig. 2. We find the parameter K, = a,/a, from ratios N; and N, known from
experiment for given h = j/R, r = r/R and z/h by using similar graphs or analytic-machine
methods. The heat conduction coefficient XA, (for the K, parameter found) is determined from
the formula

ﬁJl

A, = 7 ;
“T 0,0, w1, B Ke) (24)
K [ n(2n 1)
- 4 > 'l 2%VEK ]
A , a) =1 — Ty —— @ .
(h, Ka) =1 A VK, zo o 4 1 (25)

The dependence A(h, K;) is presented in Fig. 3. We calculate the thermal diffusivity coef-
ficient a, from the formula

a, =M /b3 . (26)
We find the thermal diffusivity a, and the heat conduction coefficients A, from the formulas
Qy = azKa; A= ;\'zKa- (27)

The volume specific heat cy is found from the relating equation a.cy = Aij.

Using (7) for « = 0, an expression is easily written to determine the two-dimensional
nonstationary temperature field 9(r, z, t) in an unbounded orthotropic plate of height
(thickness) 2h, both of whose surfaces (z = 0 and z = 2h) are heated (symmetrically) through
identical circular domains 0 = r < R by specific thermal fluxes q{r, t):

o

. 1 r2 h—2 a
Ofr, 2, © L —exp | — )@ ( 1 z )
2 =k OY g ( 40 ) "\ !m et % 25)
R ,
x (xexp [— I L) , T — &) dxdt,
J p( 4a,g)°(2a,g,"(“ ) dxdt
where
h—z|. a .\ _ h = ¥ 2 \2
®°( 2h ‘”‘h?g)’ Vrag ,,,:E_e,exp[_ ok (\m‘"z'h') ]
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Fig. 2. The dependence of (22) and (23) on the parameter K,
for definite values of h, r, z/h: 1) N; = £,(K;) for h = 1,

= 0.75, z_= 0; 2) for h = 0.5, r = 0.75, z = 0; 3) N,
£f,(Ky) for h = 0.5, r = 0, z/h = 0.5.

Fig. 3. The dependence A(h, k) = f(h/Ky) (25)

0o

Information about the analytic regularities of a change in the temperature 0(r, =z, T)
at the middle of the plate (the point r = 0, z = h) and at the center of circular heating
spots (the points r = 0, z = 0 or v = 0, z = 2h) is of significant interest for applied
purposes of a thermophysical experiment. For q(r, 1) = q, = const we have from (28)

1

’ 2
00,09 ()VFOz{V} —-1erfc< K“——~)+

T, Ki, B 2 VFo,
i ﬁ‘ \ 1 2};2 (29)
[t (e — s 1/ ol
+2mzl ] lerfc( Vi ) jerfc ( K Fo, + Fo, ;
8(0, A, 7) o [ ( 7(2m—1) )
PO Y 4VE fo[Em— 1) )
KL Vo, ,% [Ierc SV
— jerfc (1/ 1 , P@m—1p 1
\ P 4K, Fo, 4 Fo, >”' (30)

If K; = 1, then appropriate solutions result from (28)-(30) for an unbounded iso:ropic
plate of height 2h heated from both sides (symmetrically) by a circular heat source o given
density. For K = 1, q(r, 1) = g, and R »~ (the passage to the one-dimensional case)., we

arrive at appropriate solutions to determine the temperature fields 0(z, 1) = lim ©0ixr, z,
R-+o0

1) in an unbounded isotropic plate of height 2h, heated from both sides by constant thermal

fluxes [12] from (28)-(30).

The temperature drop AT, p(t) = [T(0, 0, 1) = T(0, h, ©)]/T,Ki, between the central
point of the heating spot (on one of the plate surfaces) and the middle of the plate on the
axis of symmetry r = 0 will be

_T(0,0, )—=T(0, h, 1) :2‘1/F_" 1

AT n(v) = ToKi, Ozivj_{
1
, K. * mh
— ierfc (-——17%—02—) 42 2 [1erfc ( o ) — )
. / 1 mR Rem—1)
- _ f ———e————

ierfc (\/ Ko, + o, ) 1erc( Vs )-]_

- ferfe l/ 1 | Ez(2m——1)2) }
h 4K,Fo, 4To, b
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Fig. 4. Physical model of an unbounded orthotro
orthotropic plate heated through an annu-
lar domain z = 0, R; < r < R,.

The dependences (29)-{(31) obtained can be utilized to determine the thermophysical proper-
ties of iso- and orthotropic materials in a quasistationary thermal regime.

2. HEATING THROUGH AN ANANULAR DOMAIN

Formulation of this nonstationary heat conduction problem is analogous to the preced-
ing, except that the surface (z = 0) of the unbounded orthotropic plate (Fig. 4) is heated
by a heat flux of density q(r, t) acting in an annular domain R; < r < R,. The solution of
the problem in the Laplace transform space has the form

T phn & -
@(r, 2, S)" Z Os *%;_IJZ—._——_KZ—S—— [RS; XJO(pX)q(X, S)dx] X
meﬁ+sm[_V_ Va2 +s +aﬂ4ﬁq/Z)Vmﬁ+s]
a
X £ dp.
@V@ﬂﬂ+wsh{ _.meh+s]—+ach[ _.V%mi+s} (32)
Va, 1%
For the case o = «
(h—2) ]
sh Vap+s
PPl [ Vaz P o
apt+s ch [ Vi 1/anp2%-sJ
R, = (33)
X S xJo (px) g (x, s)dxdp,
Ry
and if the specific heat flux is a function of just the time q(r, s) = q(s) then
Ber. 2 9= 40 Ty (pr)
(r, 2, s) b, | _V/?Zﬂgt¥7§- X
h[jiééle/aﬁﬂ—ksJ (34)

X [Rad1(pRy) — RyJ 1 (pRy)] dp

ch[v”zvmj

It is not difficult to go from the transforms over to the originals in the solutions (32)-
(34) since the solution (34) in integral form becomes

a fol / r2 h—z
-z [ = —_ G) X
O(r, z, 1) S af : exp( 4ar§) 1( % ing hZ) -
35
Rs X2 xr
X \ xexp|{— I ( ) q(x, ©T—E)dxdt.
}isl ( 4a,§ ) ° 20,8

The solution (35) can be written in terms of infinite series analogous to the series (9)-
(14) in the case of a known function of the heat flux density q(x, t). In general, it is
easy to note that the general form of the solutions to determine the spatial temperature
fields in the orthotropic unbounded plate under consideration that is heated through an an-
nular domain, differs from the corresponding solutions in the case of local heating of this
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plate through a circle of known radius by the presence (in the general solution) of the def-
inite integral foﬂpx)q(x s)dx in place of foﬂpx)q(x s)dx for heating through a circular

domain. Therefore, execution of appropriate analytlcal investigations and computations in
the case of local heating of the plate under consideration through an annular domain is of
no special difficulty since the investigations performed at the beginning of the paper for
heating this plate through a circular domain can be utilized.

The solutions represented for the nonstationary and stationary heat conduction problems
for an unbounded iso- and orthotropic plate with given discontinuous boundary conditions
permit investigation of an important methodological question of the theory and practice of
thermophysical measurements associated with the optimal selection of the linear dimensions
of the specimen to be tested h = h/R for which a simpler physicomathematical model of an
iso- and orthotropic half-space (h + =) heated by local heat sources [2-11] can be utilized
successfully with a given degree of accuracy (in the whole time interval).

Starting from (16), we have as h » «

lim 740, 0, o0)—T, _ 7*(0, 0, o‘o)—T0 _ L_’ (36)
B o Ty Ki, T, Ki, VK,

where T*(0, 0, «) is the value of the stationary temperature at the center of a circular
heat source of constant intensity for local heating of an orthotropic half-space [10].

Therefore, for local heating of an orthotropic material through a circular domain by a
constant heat flux, the relative methodological error § (%) in the temperature readinzs
{T(o, 0, ©) = Ty] on an orthotropic specimen of height h as compared with the tempera:ure
readings [T*(0, 0, «) — T, when h > « will equal
[T*(0, 0, c0) =Tyl — [T (0, 0, c0)—T,l

T#(0, 0, 00)—T

6= -100 % =

(37)
~ 1T 29 VR dx}-lOO %.
X

0
The dependence (37) shows that satisfaction of the condition of half-boundedness (h =
®) during investigations of orthotropic materials heated through a circular domain depends
on the complex group hvK,. For an analogous investigation of isotropic materials (K = 1)

the corresponding methodological estimates & (%) will be functions of just the parameter h =
h/R.

The optimal selection of the diameter 2rgpe for which the physicomathematical mocel of
an iso- and orthotropic half-space can be used with a given degree of accuracy [2-11] is
found by starting from the solution of the following two-dimensional problem of staticnary
heat conduction for an orthotropic semi-bounded body with mixed discontinuous boundary con-
ditions: let the semi-boundary orthotropic body (z = 0) be heated through a circular domain
0 €<r<r, z=0 by a constant heat flux of density q,. Outside the limits of the heating
spot ¥ > R, z = 0 on the whole extent of the heat transfer (1 - =) a constant temperature
is maintained equal to the initial value T,, i.e., T(r, 0, ) =T, for r > R, z = 0, T = =,
The general solution to determine the two-dimensional stationary temperature field Og4¢(r, z)
= Tst(r, z) — T, at any point r, z of an orthotropic half-space under the formulated bound-
ary conditions can be written in the form

2 = —_
Oulrr )= — = [ew=pz VR 1)
(38)

X{ﬂnpR-—pRcmpR}«Q}.
p

For z = 0 we will have the value of the stationary temperature on the heating suriace
of an orthotropic semi-bounded body through a circle of radius r = R

| 20R_ 1/”“1_:1 r<R;
Olr, 0 ={ #: VK R (39)

0, r>R.
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Using (38), the ratio between the heat flux density A,(38g¢(r, 0))/dz at any point of
the boundary surface z = 0, r 2 0 and the given heat flux density q, in the circle domain
0 <r <R, z=20 can be found easily

-1, r<<R;
Kl 2 [~————l——<=r——-mmﬁn(-B—)],r:>R. (40)
o 220 by rz r
= !

The expression (40) obtained is the initial equation to determine the specimen radius
T = rgpe for which the ratio q*(r)/q, would satisfy the requisite accuracy. Thus, for ex-
ample, for r/R = rspe/R = 4.8, the ratio is q*(r)/g, = 0.001, which is 0.1%. Therefore, the
error in determining the heat conductivity Tspe = 4,8R (for the realization of local speci-
ment heating through a circle of radius R in the experiment) does not exceed 0.17% when a
specimen radius rgpe = 4.8R is selected, for other conditions of the experiment being ideal.
It should be noted that the parameter of the material being investigated Kz = a,/a, = Ap/A .
does not exert influence on the optimal selection of the specimen size from (40).

NOTATION

e =o0o(r, z, 1) = T(r, z, ) — T,, excess temperature at any point of an unbounded or-
thotropic plate; T,, initial temperature of the plate; r, 2z, running cylindrical coordinates;
T, time; h, plate height (thickness); h = h/R, relative (dimensionless) plate parameter
characterizing its thickness; R, radius of the circular heat source; R;, R;, inner and outer
radii of the annular heat source, respectively; a, heat transfer coefficient on the surface

= h of the plate under consideration; q(r, 1), heat flux density at z = 0 in the circular
0 £ r R or annular R; £ r £ R, heating domains; A;, a,, Ay, ay, heat conductivity and
thermal diffusivity of a plate in the directions of the z and r coordinates respectively;

z and r; b; = Allv thermal activity in the i direction; éﬂpz,sﬁ=5 gexp(—sﬂ X8{r, z, T)Jo(pr)rdrdz
‘D0

Laplace and Hankel transform of the desired excess temperature function 0(r¥, z, T); S,p,
Laplace and Hankel integral transform parameters respectively; Jo(x), J;(x), Bessel func-
tions of real argument of zero and first orders respectively; C,(p, s), C,(p, s), constants
of integration of the transformed heat conduction equation; ch(x), sh(x), hyperbolic func-
tions; I,(x), Ky(x), modified Bessel functions; 0,(v|t), 9,(v|t), theta function (according
to the text); Fo, = a,t/R? and Fo, = a,t/R?, Fourier numbers; Ki, = q,R/(A,T,) and Ki, =
qQoR/(ApT,), Kirpichev criteria; Lvj = qov1/(biTo), Lykov criterion; Ky = ap/aj = Ky = 1./,
parameter characterizing the ratio between the thermal diffusivities and heat conductivi-
ties in appropriate directions of the relative cylindrical coordinates z = z/R and r = r/R;
1erfc(x) multiple probability integral; I'{a, x), additional incomplete Gamma function;
,F1(a, b; c; x), Gauss hypergeometric function; E(r) = E(r/R), complete elliptical integral
of the second kind; q, = W,/(7nR?) = const, constant heat flux density for a circular heat
(W, is the heat source intensity in W); N, = [T(r, 0, «) — T,1/{T(0, O, 1) — Ts1, N, =

[T(0, z, =) — T,1/[T(0, 0, «) — T,1, ratio of the excess temperatures in the stationary re-
gime for correspondlng points of an orthotropic plate; 4T, p(t) = [T(0, 0, t) — T(0, h, )1/
(T¢Ki,), dimensionless temperature drop over the plate section between the points r =z =9
and r = 0, z = h for the case o = 0.

LITERATURE CITED

1. H. Bateman and A. Erdelyi, Higher Transcendental Functions. Elliptic and Automorphic

Functions. Lamé and Mathieu Functions [Russian translation], Moscow (1967).

V. P. Kozlov, Two-dimensional Axisymmetric Nonstationary Heat Conduction Problem [in

Russian], Minsk (1986).

3. A. P. Prudnikov, Yu. A. Brychkov, and 0. I. Marichev, Integrals and Series [in Russian],
Moscow (1981).

2
.

4. V. P. Kozlov and A. V. Stankevich, Inzh.-Fiz. Zh., 47, No. 2, 250-255 (1984).

5. V. P. Kozlov, Inzh.-Fiz. Zh., 47, No. 3, 463-469 (1984).

6. V. P. Kozlov, Inzh.-Fiz. Zh., 50, No. 4, 659-666 (1986).

7. A. G. Shashkov, V. P. Kozlov, and V. N. Lipovtsev, Inzh.-Fiz. Zh., 50, No. 3, 458-465
(1986). '

8. V. P. Kozlov and V. N. Llpovtsev, Inzh.~Fiz. Zh., 51, No. 2, 287-294 (1986).

1390



9. V. P. Kozlov, V. N. Lipovtsev, and G. P. Pisarik, Industrial Thermal Engineering [in
Russian], 9, No. 2, 96-102 (1987).

10. V. P. Kozlov, G. M. Volokhov, and V. N. Lipovtsev, Inzh.-Fiz. Zh., 34, No. 5, 828-835
(1988).

11. J. V. Beck, Heat Mass Transf., 24, No. 1, 155-164 (1981).

12. A. V. Lykov, Theory of Heat Conduction [in Russian], Moscow (1967).

TEMPERATURE FIELD IN A HALFSPACE WITH A PARALLELEPIPED-
SHAPED HEAT-RELEASING INCLUSION

Yu. M. Kolyano, Yu. M. Krichevets, UDC 536.24
E. G. Ivanik, and V. I. Gavrysh

A study is made of the stationary temperature field in a half-space containing
a foreign heat-releasing inclusion of parallelepiped shape of small dimensions.

In the operation of metalloceramic bodies of radio-electronic apparatus a need a:ises
for studying temperature fields for bodies with foreign inclusions of small dimensions.

In this connection we consider an isotropic halfspace containing, at a distance ! from
its boundary surface, a foreign inclusion of parallelepiped shape and volume V; = 8hbd in
whose vicinity uniformly distributed internal heat sources of strength q, are operative.

We refer the body in question to a rectangular cartesian coordinate system. We place the
coordinate origin at the center of the inclusion. On the boundary surface z = —d—¢ a con-
vective heat exchange is specified with external mean temperature t..

For the determination of the stationary temperature field we have the heat conduction
equation [1]

09'] d ]
— }\, y — — }\, ’ H T
ax[(x,y 2) axJ—]—ay[(xyz) yJ—i— -
? o1
-+ E [7»()(, Y, Z) 92 } = Q(xr Y, Z),

where
Mix, y, 2) =2+ (A — M)N(x, YN (y, B) N (2, d);
Q¥ 4, 2)=qN (x, N (y, b)N (z, a); (2
O=1—1t; Nx, i)=S(x+h) —Sx—h).
The boundary conditions may be wrigten in the form

i)

7\,1 a o= O:Z@ fOrZ’T: '""d——’l, (-')—:O for 2_"'m,
Z (3)
0-0,22 _0 for rj—>o00, ©=0, 22 0 for |y oo,
dx 7y

We assume that the dimensions of the foreign inclusion are small in comparison with
the distance from the coupling boundary to the boundary surface. We introduce the addiced
thermal conductivity A, = A;V; of the inclusion, the adduced power Q, = q,V, of the heat
sources acting in it, and in Egqs. (2) we pass to the limit, letting h-> 0, b~ 0, d > 1,
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